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Abstract A hydrodynamic model explaining the mecha-

nism of contact of marine larvae in vertical flows is

presented. Two hydrodynamic factors—flow vorticity and

larval self-propulsion—are the key components in the

mathematical model. It is shown that flow vorticity causes a

larva to rotate and change the direction of self-thrust, thus

leading to its migration across the mean flow. The latter

motion is of an oscillatory nature. Contact will be enabled

only for sufficiently large amplitudes of oscillations. Simple

expressions for the probability of initial contact are obtained

for two-dimensional Couette and Poiseuille flows. The three-

dimensional motion of a larva in a tube is studied using the

Monte-Carlo simulations. It is shown that contact probability

depends mainly on the ratio of the characteristic flow velocity

and the larva’s swimming speed. The theoretical results

compare favorably with available experimental data. Possi-

ble applications of the method and results presented here to

the classical problem of larval attachment to bodies of gen-

eral geometry are briefly discussed in the concluding section.

List of symbols

Bold letters vector

Subscripts

X,Y,Z

projections of a vector on axes O1X, O1Y,

O1Z

Subscripts

x,y,z

projections of a vector on axes Ox, Oy, Oz

Subscript O denotes values calculated in the origin of the

coordinate system Oxyz

aik components of the matrix of cosines of

directions

b(bx, by, bz) radius vector of the center of buoyancy

in the attached to the body coordinate

system

bC = bz the distance between the center of gravity

and the metacenter (metacentric height)

B volume of a body

C constant of integration

d distance between the wall and the center of

mass of the larva

D diameter a of tube

Dp diameter of a spherical body

F total vector of hydrodynamic forces

FB buoyancy force

FD drag

FT self-thrust

g acceleration of gravity

h characteristic scale of a linear shear flow;

width of the Couette channel; thickness of

the linear boundary layer

I tensor of mass moment of inertia

jX, jY, jZ vector units of the axes of the inertial

coordinate system

L characteristic length of the body

m the mass of a particle, larva

M total vector of hydrodynamic moments

MS shear induced torque moment

MB hydrostatic moment

O1XYZ right-hand orthogonal coordinate system

fixed in space
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Ox0y0z0 moving coordinate system with axes parallel

to those of O1XYZ

Oxyz right-hand orthogonal coordinate system

fixed in a body

P probability of contact of a larva to a solid

R radius of a tube, half-width of a plane

Poiseuille channel

Re = U? L/

m
Reynolds numbers

rO radius-vector of the initial of the attached to

the body coordinate system

Stk Stokes number

t time

tp particle relaxation time

tcontact
max maximal time which is necessary for a body

to make contact

U fluid velocity

UO fluid velocity calculated in the origin of the

moving coordinate system

U? upstream velocity far from a body

Ua characteristic flow velocity

V velocity of larva

VS larva’s swimming velocity

Vt velocity of gravimetrical settlement

Vt ¼ Vt=Ua velocity of gravimetrical settlement scaled

with the characteristic flow velocity

XO, YO, ZO coordinates of the initial of the fixed in the

body coordinate system

ZO
0 coordinate of the center of mass of a body,

larva at the initial moment of time

a an angle designating the range (-a,a) of

initial angles of pitch of a larva

ci random number

d distance between the wall and the center of

mass of the larva normalized with the tube

diameter

Dm virtual mass of fluid

e ratio of the buoyancy restoring moment and

the shear stress torque moment

f coordinate ZO normalized with the geo-

metrical characteristic scale of a particular

flow: h for Couette or linear shear flows, R for

the Poiseuille channel or circular tube

f0 coordinate f at the initial moment of time

h angle of roll

k = Ua /VS

l fluid viscosity

m fluid kinematic viscosity

n longitudinal coordinate XO normalized with the

geometrical characteristic scale of a particular

flow: h for Couette or linear shear flows, R for

the Poiseuille channel or circular tube

q fluid density

qp mean density of a body

/ angle of yaw

w angle of pitch

w0 initial angle of pitch

we = arcsin(1/e)-pitch angle providing stable

motion of a larva without rotation

x angular velocity of larva

X half of the vorticity vector, angular velocity

of fluid particle

XO half of the vorticity vector calculated in the

origin of the moving coordinate system

Introduction

One or several consequent contacts of a larva with a rigid

surface determine its future life stages, including attach-

ment, settlement, metamorphosis and eventual survival. In

1991, Mullineaux and Butman formulated two questions of

principal importance for larval ecology:

... Is initial contact of ... cyprids with a surface

controlled by hydrodynamics, and does the proba-

bility of contact determine the cyprid’s ultimate

settlement site?

Today it is well recognized that settlement of larvae on

substrates is controlled not only by hydrodynamics but also

by a large number of abiotic and biotic parameters (see e.g.

Abelson and Denny 1997; Abelson et al. 1993, 1994;

Eckman 1990; Eckman and Duggins 1998; Jonsson et al.

1991, 2004; Hart and Finelli 1999; Mullineaux and Butman

1990, 1991; Mullineaux and Garland 1993; Qian et al.

1999, 2000; Pasternak et al. 2004, Perkol-Finkel et al.

2006). However, as it was noted by Mullineaux and Gar-

land (1993), the ability to distinguish between larval

responses to flow from their responses to other surface

cues, determines whether the effect of streams on larval

contact is ‘‘... behavioral or purely hydrodynamic’’.

In this work, we are not intended to construct a math-

ematical model of contact mechanisms for all the infinite

variety of larval forms and flow types. It is impossible. We

consider here only certain hydrodynamics mechanisms of

contact leaving apart numerous biotic and abiotic factors.

Our study is restricted to simple but representative types of

flows and larval forms. The technical task of our investi-

gation is to calculate the contact probability for larvae

moving in vortical flows and to compare it with experi-

mental data. We thereby encounter a specific difficulty: for

most of available experimental observations of larval

behavior in well controlled flows the measured parameters

are the settlement or the attachment rates, not the contact
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rate. However, the contact probability P and the settlement

probability Psettlement are not equal but related as:

Psettlement ¼ PPacceptance; ð1Þ

where the probability of acceptance Pacceptance comprises

behavioral responses of larvae to surface conditions or flow

conditions and the history of the larvae (Mullineaux and

Garland 1993). Many of marine species are able to undergo

not one but several secondary settlements (e.g. Mullineaux

and Butman 1991; Larsson and Jonsson 2006). In this

respect, the probability of acceptance includes also the

number of previous contacts. If settlement follows the first

contact event, then the probability of contact and the prob-

ability of acceptance may be positively correlated but in any

case the probability of initial contact of a larva with a sub-

strate represents an upper bound of the attachment

probability. Since it is difficult (if at all possible) to calculate

the attachment probability, an estimate of its upper bound

may be of great interest. This characteristic of the settlement

phenomenon is studied theoretically in the present work.

The degree of complexity of hydrodynamic and mathe-

matical models of larval motion depends on the complexity

of the flows, in which the larvae move. Natural flows tend to

be turbulent. The influence of turbulence on the settlement of

marine larvae on different substrates is well recognized (see

e.g. Crimaldi et al. 2002; Denny and Shibata 1989; Denny

et al. 2002; Eckman 1990, 1996; Eckman and Duggins 1998;

Jonsson et al. 2004; Mullineaux and Butman 1990, 1991).

In turbulent flows, fluid particles move unsteadily along

complicated and unpredictable random trajectories, albeit

in many turbulent processes the mean flow characteristics

are not chaotic and can be described (at least in principle).

Turbulent mixing may disperse marine larvae across the

mean flow streamlines just as it disperses passive small

particles. If the turbulence intensity is high then the role of

turbulent mixing in delivering larvae to substrates is more

important than the role of the mean transport; in other cases

the situation can be the opposite. For instance, the bottom

boundary layer created by not-steep waves can be laminar

(e.g. Fredsøe and Deigaard 1992; Nilsen 1992). However,

under steep and long waves, beneath breaking waves, along

the sea shore, in rocky surf zones and on the rough bottom

of a deep sea the corresponding boundary layers are tur-

bulent. In turbulent boundary layers, turbulent mixing is

the most probable mechanism for contact of propagules

with substrata (Denny and Shibata 1989).

Contact due to turbulent mixing although it is an obvi-

ously important phenomenon, is however far beyond the

scope of our study. We also do not consider such processes as

those in which a larva may rapidly change the direction of

motion due to strong pulsations in turbulent boundary layers.

Most of the analysis of the present work relates to

laminar flows. Laminar fluid motions are observed in the

sea bottom viscous sublayers, which thicknesses can vary

within 0.5–6 mm (Archer 1989; Caldwell and Chriss

1979). If the size of a larva is much smaller then the depth

of the viscous sublayer, and if the viscous sublayer is not

affected strongly by turbulent pulsation then a mathemat-

ical model of larval motion in laminar flows can be used to

explain larval contact with the sea bed. However, in many

cases the viscous sublayer may be unsteady and only

slightly thicker than the characteristic size of settling

larvae.

Laminar boundary layers can be found on the upstream

side of many bodies, or following the terminology by

Abelson and Denny (1997) on the so-called protruding

bodies. A broad class of such natural and artificial marine

structures does exist in reality.

However, it is worth to consider first laminar flow in

detail because that many of its features are presented in

natural sea environment (Fredsøe and Deigaard 1992;

Nilsen 1992) and because larval contact in laminar flows

clues towards efficient methods of analyzing contact in

natural flows. Contact phenomenon includes a huge num-

ber of biotic and abiotic factors which are mixed

altogether. It may be hard to explain the overall cumulative

effect of various factors influencing contact in turbulent

flows without a clear understanding of the role and the

relative importance of each of them in laminar flows.

In this work, we consider a principal contradiction of the

contact phenomenon which only in laminar flows can be

recognized in its pure essence. According to the modern

paradigm of transport of passive larvae to substrates three

different hydrodynamic mechanisms can be distinguished:

the gravimetrical settling, transport by mean flow and tur-

bulent mixing. Consider first such cases when larvae settling

on substrates can not benefit from the gravitational sinking.

Qian et al. (1999) observed the attachment of Bugula

neritina to clean walls of horizontal and vertical tubes

when the flow inside the tubes was laminar or turbulent. It

is not surprising that for turbulent flow regimes contact

took place due to turbulent mixing. However, what can be

the cause of larval contact in laminar flow?

For a fully developed laminar regime the fluid stream-

lines in a tube are parallel to the wall of the tube. Under

such circumstances larvae making contact have to move in

a direction perpendicular to the streamlines. For vertical

tubes this effect can not be explained by the effective

weight of a larva because it acts in the direction parallel to

the tube’s axis. Larvae of B. neritina are close to a sphere,

their aspect ratio (the ratio of the length and beam) is about

1.1. Therefore, the hydrodynamic effect of non-sphericity

on the dynamic of this larva may be considered as ines-

sential in the first approximation (Swaminathan et al.

2006). Motion of B. neritina across the streamlines can not

be explained by the hydrodynamic lift acting in the
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direction perpendicular to the tube’s axis because, in a

laminar tube flow, small neutrally buoyant spherical par-

ticles concentrate at a distance of about 0.6 radii from the

axis (Segre and Silberberg 1962). This distance is greater

than the diameter of a particle by several orders of mag-

nitude; whereas the distance that is required for a larva to

initiate contact must be rather small, of an order of the

characteristic length of a larva (Abelson and Denny 1997).

Larvae of B. neritina are phototactile (Lynch 1947) and

may correct their position in response to light but in the

paper by Qian et al. (1999) we did not find indications that

motion of larvae was affected by the overall illuminations

of the tubes or by contrasts of the light and shadow.

Therefore, we infer that the only cause of larval motion

across the main stream is their motility. Do larvae choose

this direction of motion deliberately, is the motions across

the streamlines imposed by hydrodynamics solely, or is the

transverse drift a result of a combination of behavioral and

hydrodynamic factors? In this respect, it is interesting to

quote Lynch (1947):

The larvae of B. neritina, however, under ordinary

laboratory conditions ... were never observed to

become negatively phototactic at any time; swarms of

metamorphosed larvae could always be found on the

lighted side of the container within an hour after they

had been shed. Furthermore, they maintained a def-

initely negative geotaxis throughout the entire larval

period and attached to the sides of the container, but

fixation always took place at or near the surface.

Here, then, was a paradox! What factors in nature,

not operative under the unusual conditions of the

laboratory, could be responsible for causing larvae to

attach near the bottom of the channel and in regions

not exposed to the direct light of the sun?

In the present work, we are seeking the answer to the

above question in the hydrodynamics of a larva which is

different in sea currents and in a still water of a laboratory

tank, the fact revealed first by Butman et al. (1988).

Larvae settle on a vertical protruding body, e.g., on

vertical cylinders (Abelson and Denny 1997). Whether the

flow regime around such a body is turbulent or laminar is

determined by the corresponding Reynolds number Re =

U? L/m, where U? is the ambient mean fluid velocity,

L is the characteristic diameter of the cylinder and m is the

kinematic viscosity of the fluid. If the Reynolds number

exceeds a certain threshold Re [ 5 9 105, it is common to

say that the fluid motion around the cylinder is turbulent. A

silent feature of such a ‘‘turbulent’’ flow is that on the front

upstream part of the cylinder the fluid motion can be

considered as laminar (Achenbach 1968; Schlichting 1979;

Roshko 1961; Scorer 1978). The extent of the laminar zone

depends on the Reynolds number but, roughly speaking,

the boundary layer on the entire front (upstream) part of the

cylinder is laminar.

A small rigid particle approaching a large body moves

very approximately along the fluid streamlines, which do

not cross the body surface. However, the most inertial

particles may deviate from the streamlines and hit the

obstacle (Scorer 1978). The probability of contact of a

passive larva with an obstacle is strongly related to the

efficiency of catch of a cloud of rigid particles by a large

body. In the theory of aerosols and hydrosols, the effi-

ciency of catch is defined as the proportion of the particles

lying in the cylinder swept out by the geometrical outline

of the body which actually collide with and are captured by

that body (Scorer 1978). As it follows from the theory of

aerosols and hydrosols, the probability of contact of a small

rigid particle of diameter Dp with a large cylinder of

diameter L (L � Dp) is determined by the Stokes’ number,

Stk ¼ 1þ q
2qp

 !
qpU1D2

p

18lL
; ð2Þ

where q is the density of water, qp is the mean density of

the rigid particle, and l is the water viscosity (Fuchs 1964;

Seinfeld and Pandis 1998). For a larva of diameter of

200 lm and for an obstacle of 1 cm length the Stokes’

number is small to such and extent that the efficiency of

catch is practically zero (Fuchs 1964). However, larvae do

settle in a horizontal stream on a vertical body of a

diameter, which can be much larger than 1 cm.

It is even more surprising that larvae settle on bodies of

small cross-section areas, e.g. on relatively thin plates

which are aligned with the mean stream and where the

gravimetrical settlement also does not influence contact

significantly (Mullineaux and Butman 1991; Mullinaux and

Garland 1993). Mullineaux and Butman (1991) considered

larval settlement on three types of plates: a thin plate with a

sharp edge, a somewhat thicker plate with rounded ends,

and a combination of two perpendicular plates (Fig. 1).

Mullineaux and Butman (1991) explain larval contact in

these experiments by the flow advection towards the plates

in the area of the reattachment of the flow, which has been

separated at the leading edges of the plates. However, it can

be seen from Fig. 1a that for a thin plate the mean flow is

directed away from it. It is unlikely that in this particular

case contact is caused by turbulent mixing. In this respect,

Mullineaux and Butman (1991) on p. 98, and p. 102 of their

work made several important remarks:

Cyprid contact was significantly correlated with the

vertical advection on the most of the plates, but was

not consistently related to either turbulence or shear

stress ... Turbulence ... seems to play lesser role in

initial contact.
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This quotation should be understood in the context of

the problem considered, i.e., that the particular values of

the turbulent intensity in this particular experiment do not

influence drastically the contact phenomenon. Neverthe-

less, how do passive larvae make contact if the mean

streamlines of the flow do not cross the surface, the mean

advection is away from the surface, and turbulence mixing

is not a significant factor influencing contact?

Finally, if the concept of a passive transport of larvae to

substrate cannot consistently explain many cases of larval

contact, we return to the same question by Mullineaux and

Butman (1991) which is reformulated here as follows:

‘‘How do larvae attach to a bounding surface, when contact

is seemingly highly improbable?’’

In attempting to answer this long-standing question, we

studied here the mechanisms of larval contact in a linear

shear flow, in a plane channel and in a tube. We chose to

study larval contact in linear shear and Poiseuille flows not

only because of their relative simplicity but also because

they have many important similarities with a laminar part

of a boundary layer of a body with a laminar or turbulent

wake. The linear shear flow approximation may be used to

explain the properties of a boundary layer with a more

complex velocity profile (Schlichting 1979) or can be

applied to explain the motion of living organisms even in a

turbulent environment (see e.g. Karp-Boss and Jumars

1998; Grünbaum and Strathnman 2003).

We consider examples of flow which are vortical. All

real flows, laminar or turbulent, are vortical. The flow

vorticity can be imagined as twice angular velocity x of a

small volume of fluid translating with the velocity fluid

vector U. The relation between the flow vorticity and the

angular velocity X is expressed as

X ¼ 1

2
curl U; ð3Þ

where the mathematical operation curl U is explained in

Appendix IV. A small rigid spherical particle in viscous

non-uniform flow also rotates due to the shear stresses on

its surface, and its angular velocity x is close to the angular

velocity X of a small volume of fluid, i.e.,

x � X: ð4Þ

In 1955, Crisp noted that in a laminar tube flow larvae

rotate. They behave passively and do not use their self-

thrust if the shear rate calculated on the wall of the tube is

relatively low. However, when the wall shear rate exceeds

a certain limit (different for different species), cyprids start

to behave actively: they use their locomotion devices,

develop a certain swimming speed and, as a result, attach to

the wall.

It was interesting to note that at lower rates of flow

the cyprids often did not swim, but were rolled pas-

sively ... by the current. This passive behavior was

progressively less in evidence as the rate of shear

increased, and the highest percentage of attachment

in B. balanoides occurred between 60 and 80 s-1.

When the rate of shear exceeded 50 s-1 the cyprids

were stimulated to great swimming activity and often

attached immediately. (Crisp 1955).

The above quotation refers to species of Balanus ba-

lanoides, but for the estuary specie Eliminus modestus the

situation is similar, except that maximum attachment was

achieved at the threshold values of the shear rate—about

45–50 s-1.

In fact, in each point of a tube the shear rate (the

velocity gradient in the radial direction) also represents

the fluid vorticity. Bearing this in mind, we are now ready

to formulate the central biological assumption of our

work, which couples the hydrodynamic and biological

factors.

Based on observations of Crisp (1955), we assume that it

is the larva’s rotation in vortical flows that triggers the

mechanism of self-propulsion, i.e., a rotating larva devel-

ops self-thrust (Fig. 2). In a tube the shear rate is maximal

on the wall; on the axis of the tube it is zero. It follows

from the experiments of Crisp (1955) and Qian et al.

(1999) that the probability of larval attachment in laminar

flows may be rather high and it is unlikely that only larvae

that enter a tube close to the wall can make contact. It is

more probable that larvae start to swim at such values of

(a)

(b)

(c)

Fig. 1 Schematic drawing of the experimental results of Mullineaux

and Butman (1991) with mean streamlines for three types of plates.

The mean flow is directed away from the thin plate (a). On a thick (b)

and split (c) plates flows in the vicinity of their leading edges are

characterized by large vortices that may be responsible for larval

transport toward the plates. One of the causes of larval transport to the

plate (a) may be turbulent mixing. However, it is also possible that

contact is due to the mean vorticity, which rotates a larva and alters

the direction of its self-thrust
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the flow vorticity, which are much smaller than those on

the wall. The corresponding threshold values of the vor-

ticity and of the angular velocity of a larva may be species

specific, and they are not known exactly. Under such cir-

cumstances we assume that a larva starts to swim at even a

very small value of the flow vorticity by developing the

maximal available thrust, which remains constant in the

process of motion.

Methods

Assumptions

We refer to a larva with a body that can be considered as a

rigid particle. We assume that the larva is small, i.e., that its

typical length is much smaller than the characteristic scale

of the spatial flow variations. In tubes or channels this scale

is of the same order of magnitude as the diameter of the

tube or the width of the channel. For outer flows the scale

relates to the thickness of the boundary layer of the body

catching the larva.

Strictly speaking, our formulation pertains to laminar

regimes of fluid motion. However, it is important to note

that it comprises the mechanism of larval contact with

bodies which may have a fully turbulent wake but a lam-

inar boundary layer on their upstream part.

In some parts of our analysis in order to obtain analytic

results we shall assume that physical contact of a larva with

a substrate occurs when the larva’s center of mass reaches

the rigid surface. In other words, a larva is considered as a

point that behaves in a flow as a particle of finite albeit

small diameter, a restriction which is lifted further in the

numerical simulations.

We consider larval contact only in slowly varying flows.

Correspondingly, it is also assumed that a larva moves

slowly with respect to the ambient flow and that the

hydrodynamic forces acting on it can be described within

the framework of the low Reynolds number hydrodynamics

(Happel and Brenner 1983). Whether the flow varies

‘‘slowly’’ or ‘‘fast’’ can be estimated by evaluating the

relaxation time of larval motion

tp ¼
mþ Dm

3plDp

; ð5Þ

where m is the mass of the particle (Seinfeld and Pandis

1998) and Dm is the added mass of the fluid (Lamb 1945).

Relaxation time is the time for which a passive particle

starting its motion with zero velocity in a steady flow

reaches 63% of the flow velocity. For instance, for a larva

of an equivalent diameter of an order of 250 lm the vis-

cous relaxation time is of order of 5 ms. For most larva of

interest the relaxation time is very short comparing to the

typical characteristic time of the entire process under

consideration, the time which is needed for a larva to reach

the substrate. We consider such larvae as inertialess.

Many marine larvae, by progressing forward in still

water or a uniform flow rotate about their anterior–pos-

terior axis and move along a helix-like path (Jonsson et al.

1991; Maldonado 2006; Pasternak et al. 2004; Wendt

2000). There is experimental evidence that the radius of the

corresponding helix is of the same order of magnitude as

the larva’s characteristic length (Jonsson et al. 1991) and,

thus, is small compared to the characteristic length of the

spatial flow variations. Correspondingly, in the subsequent

kinematic analysis such small trajectory variations are

disregarded.

Many larvae have a quite complex morphology which

may influence their hydrodynamics and the kinematics of

motion, including the angular velocity of their rotation in

shear flows (Karp-Boss and Jumars 1998; Karp-Boss and

Boss 2000). Since the angular velocity influences larval

trajectories and the trajectories determine the contact

probability, the later is a function of the shape of a larva.

Because of the huge variety of larval forms it is extremely

difficult to deal with their true geometry. An alternative

way to tackle the problem is to present the larva’s body as

an equivalent rigid spherical or an ellipsoidal particle with

the same mass and volume as those of the larva.

In a linear shear flow, a neutrally buoyant inertialess

spherical particle moves along streamlines and rotates with

constant angular velocity, whereas an elliptical particle has

a preferable direction aligned with the flow and rotates with

an angular velocity according to the orbits of Jeffery

(1922). However, for an inertialess ellipsoid with negative

buoyancy moving in a vertical tube the results may be

different (Swaminathan et al. 2006; Sugihara-Seki 1996).

0

0

0TF

TF

Fig. 2 A larva entering a shear flow and moving from left to right

with the main stream. In the initial left position of the larva the flow is

irrotational, the larva does not rotate and does not use thrust FT. In a

shear flow the larva starts to rotate due to the flow vorticity with an

angular velocity x. If the angular velocity x exceeds a certain

threshold x0, the larva develops self-thrust. Due to the rotation of the

vector of the self-thrust the larva changes the direction of motion. It is

characterized by an angle w, which is measured with respect to the

direction of the mean flow. Due the rotation of the vector of the self-

thrust the larva migrates across the mean flow
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Swaminathan et al. (2006) studied theoretically the motion

of an inertialess negatively buoyant rigid ellipsoidal par-

ticle settling in a laminar flow of a circular tube and found,

that under Stokes flow conditions, an ellipsoid without

inertia is observed to follow a perfectly periodic helical

orbit in which it rotates, moves along the tube and across

the stream lines. The amplitudes and periods of this

oscillatory motion depend on the initial orientation and the

aspect ratio of the ellipsoid. For instance, if an ellipsoid

with the ratio of its length and maximal beam equal to 2

enters a tube with an initial angle of 15� with respect to the

tube’s axis then the amplitude of oscillations of the ellip-

soid across the mean flow is about 0.15 of the tube radii. If

the entrance angle is about 65�, then the amplitude of

oscillations is about 0.75 of the tube radii. From the

numerical simulations of Swaminathan et al. (2006), we

infer that a slender ellipsoid without self-propulsion mov-

ing in a relatively narrow tube does not make contact with

the wall unless its entrance angle approaches to 90�. It is

rather unlikely that all larvae enter a tube with the same 90�
angle.

It should be noted also that calculations by Swaminathan

et al. (2006) pertain to a tube with a radius only four times

larger than the longitudinal semi-axis of the ellipsoid. We

consider tubes of diameters by order of magnitudes larger

than the diameter of larvae moving in these tubes and

larvae with an aspect ratio less than two.

The discussed above features of motion of a slender

particle in a vortical flow take into account its effective

weight, which can be considered as a thrust always acting

in the same direction. If a rigid particle is swimming due to

self-thrust, which can change direction, its trajectory too

may be affected by this factor (Pedley and Kessler 1992). It

is possible that the rotating vector of the thrust is a more

potent contributor to the particle drift across the mean flow

than the slenderness of the body. Correspondingly, in this

work we consider larvae with a small degree of non-

sphericity but motile, not passive. The shape of a larva is

characterized here by the only parameter, its equivalent

diameter Dp.

Once we consider a spherical larva, its center of

buoyancy and center of hydrodynamic forces are located

in the center of the sphere. However, due to the non-

uniform density of many larvae their center of gravity

may not coincide with the center of buoyancy. If all

hydrodynamic and hydrostatic moments acting on a larva

are calculated about the origin of the coordinate system

located in the center of gravity, then rotation of a larva

leads to a hydrostatic buoyancy moment. This moment

may influence a larva’s equilibrium position, its angular

velocity and the direction of motion (see e.g. Kessler

1986). Therefore, the general formulation of the problem

under consideration includes the hydrostatic force and

moment.

To calculate the hydrodynamic forces acting on a larva

we use the hydrodynamic theory of low Reynolds numbers.

We consider a larva as a smooth rigid (non-deformable)

body with a non-slip condition on its surface. Real larvae,

however, are neither smooth nor rigid. In the course of their

motion larvae can change their shape and volume. In our

investigation, however, we do not take all these factors into

account and consider only the first approximation of the

form of a lava: a rigid smooth sphere.

Coordinate systems

Three right-hand orthogonal coordinate systems are used

here: fixed in space O1XYZ, fixed in the body of a larva-

particle Oxyz, and an auxiliary coordinate system Ox0y0z0,
which moves with the larva-particle while its axes remain

parallel to the axes of the fixed in the space coordinate

system (Fig. 3). The orientation of the axes of the attached

to the body coordinate system is determined by three Euler

angles and the corresponding matrix of the cosines of

directions (Fig. 3).

The motion of a larva-particle can be represented as a

translation described in the fixed in space coordinate sys-

tem O1XYZ by the vector of linear velocity V(VX, VY, VZ) of

the origin O and the rotation with the angular velocity

xðxx;xy;xzÞ: The origin of the moving coordinate sys-

tems in the inertial coordinate system is determined by its

radius vector rO (XO, YO, ZO) and its velocity can be cal-

culated as the derivative of the radius vector with respect to

time t

drO

dt
¼ V: ð6Þ

The relations between the Euler angles and the

corresponding components of the angular velocity

xðxx;xy;xzÞ on the axes of the fixed in the body

coordinate system are given as follows (Goldstein et al.

2002):

d/
dt
¼ ðxz cos hþ xy sin hÞ sec w;

dw
dt
¼ xy cos h� xz sin h;

dh
dt
¼ xx þ ðxz cos hþ xy sin hÞ tan w:

ð7Þ

The radius vector rO and the angular velocity x determine

the location of a larva and its orientation in space.

For an arbitrary vector A, its components in the coor-

dinate systems O1XYZ and Oxyz are related as follows:
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Axk
¼
X3

k¼1

aikAXi
; AXk

¼
X3

k¼1

akiAxi
; ð8Þ

where x1 : x, x2 : y, x3 = z and X1 : X, X2 : Y,

X3 : Z. For instance, if A is a vector of self-thrust FT

acting in a posterior–anterior direction it can be assumed

that in the attached to the body coordinate system its

components are (FT, 0,0). In such a case the components of

the same vector in the inertial coordinate system can be

expressed as follows:

FTX ¼ a11FT; FTY ¼ a21FT and FTZ ¼ a31FT: ð9Þ

For a two-dimensional motion in the plane O1XZ relations

9 will be as the follows:

FTX ¼ FT cos w and FTZ ¼ �FT sin w: ð10Þ

Equation 10 is used in the sequel to analyze the motion of a

larva in two-dimensional plane flows.

Equations of motion

In the fixed in-space inertial coordinate system the motion

of a sphere moving with linear velocity V under the action

of body and surface forces RF is described by the equation

of conservation of momentum:

ðmþ DmÞ dV

dt
¼ RFðtÞ; ð11Þ

where m = Bqp, B is the volume of the body, qp is the

average density of the body, Dm = qBk and k is the added

mass coefficient depending on the form of the body and

equal 1/2 for a sphere (Lamb 1945).

The rotation of the body is described in the fixed in the

body coordinate system by the equation of conservation of

the angular momentum:

I
dx
dt
þ x� ðIxÞ ¼ RMðtÞ; ð12Þ

x

O

N

Y

1

X

Z

θ
r

φ

ψ

ψ

θ

φ

φ

O

O

z

x’

y’

y

z’

Fig. 3 Orthogonal right-hand coordinate systems: fixed in space O1XYZ and fixed in the body Oxyz. The origins of the moving coordinate

systems coincide with the center of mass of the larva-particle. The unit vectors of the fixed in the space coordinate system are denoted as jX, jY

and jZ, respectively. The rotation of the fixed in the body coordinate system Oxyz as a whole is described by three Euler’s angles (/, w, h),

which can be chosen in different ways. We chose here a coordinate system with the line of nodes defined as the line of intersection of the planes

x0Oy0 and yOz. The angle of yaw / represents the rotation around Oz0 axis, the rotation about the line of nodes is described by the angle pitch w,

and the angle of roll h corresponds to the rotation around the Ox axis. The relation between the coordinate systems Ox0y0z0 and Oxyz is given by

the following transformation matrix of the cosines of the directions

x y z
x0 a11 a12 a13

y0 a21 a22 a23

z0 a31 a32 a33

where the elements of the matrix aik (i,k = 1,2,3) are

given as follows:

a11 ¼ cos / cos w; a21 ¼ sin / cos w; a31 ¼ � sin w
a12 ¼ sin h cos / sin w� cos h sin /; a22 ¼ cos h cos /þ sin h sin / sin w; a32 ¼ sin h cos w
a13 ¼ cos h cos / sin wþ sin h cos /; a23 ¼ cos h sin / sin w� sin h cos /; a33 ¼ cos h cos w

It should be noted that the

direction of the axis O1 Z in the figure does not relate to any preferable direction in space. If the gravity and buoyancy effects are essential then

vector of acceleration of gravity is directed in the negative direction of the axis O1 Z, i.e., g = - gjZ, where g = 9.81 m/s2. The vector of

buoyancy force is pointing in the positive direction of the axis O1 Z. However, if we consider motion of a larva in a linear shear flow created by

two vertical walls (Couette channel) or a linear shear flow in a physical horizontal plane then the axis O1 Z is directed perpendicularly to the walls

of the channel then the gravity and buoyancy forces are not involved in the analysis
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where I is the mass moment inertia tensor and
P

M is the

total torque moment.

The reaction acting on the body can be represented as a

sum of gravity, buoyancy, surface and self-propulsion

forces and moments:X
FðtÞ ¼ FG þ FB þ FD þ FT; ð13ÞX
MðtÞ ¼MG þMB þMD þMT þMS; ð14Þ

where subscripts G, B, D, T and S correspond to the

gravity, buoyancy, drag, thrust and surface forces and

moments.

The gravity FG and buoyancy forces FB are given as

follows:

FG ¼ qpBg; ð15Þ

FB ¼ �qBg; ð16Þ

where g is the acceleration of gravity. The total vector of

these body forces is the effective weight given by the

following relation:

FGE ¼ ðqp � qÞBg; ð17Þ

where for a larva with negative buoyancy

qp � q [ 0: ð18Þ

Since the center of the attached to the body coordinate

system is placed in the center of gravity then MG = 0;

whereas the buoyancy force gives the following moment of

a hydrostatic nature:

MB ¼ qðb� gÞB; ð19Þ

where b(bx, by, bz) is the radius-vector of the center of

buoyancy in the fixed in the body coordinate system

(Fig. 4).

Equations 15–19 incorporate the vector of the acceler-

ation of gravity. Its projection on the axis of the fixed in

the space coordinate system O1Z is gZ = -g; whereas

the corresponding projections on the axes of the fixed in the

body coordinate system are given by 8. If we consider

larvae making contact with a horizontal substrate then the

effective weight and the buoyancy moment have to be

included into the analysis. For a larva making contact with

a vertical substrate the gravitational and buoyancy forces

can be neglected.

We assume that in the attached to the body coordinate

system the coordinates of the center of buoyancy are given by

bx = by = 0 and bz = bC, where bC is a positive quantity

representing the metacentric height. Such a configuration

provides the stability of the equilibrium position of a larva

and does not restrict the generality of the consequent analysis.

The surface hydrodynamics reactions are due to the

normal and shear stresses applied to the surface of the body

and resulting in the drag FD and the torque moment MS.

For a sphere moving with low Reynolds numbers they can

be evaluated within the framework of the low Reynolds

number hydrodynamics as follows (Happel and Brenner

1983):

FD ¼ �3plDPðV� UOÞ; ð20Þ

MS ¼ plD3
pðXO � xÞ; ð21Þ

where UO and XO are the fluid velocity and the half of the

vorticity vector calculated in the center of the sphere.

The value of the vector of the self-propulsion force FT can

be estimated by noting that during steady motion in still

water the drag of a larva and its self-thrust are equal by their

absolute values and are directed oppositely. Correspond-

ingly, the Stokes’ formula 20 gives the value of the self-thrust

as a linear function of the larva’s swimming velocity VS:

FT ¼ 3plDpVS:

For a larva of spherical form the drag and the thrust create

a corresponding moment about the center of gravity, as is

shown in Fig. 4.

For an inertialess particle the left-hand sides in Eqs. 11–

12 can be disregarded yielding equations of quasi-static

equilibriumX
FðtÞ ¼ 0 ð22Þ

andX
MðtÞ ¼ 0: ð23Þ

In such a quasi-steady motion the sum of the drag and of

the self-propulsion vector is equal to zero and therefore the

total hydrodynamic moment which is created by these two

forces is also equal to zero (Fig. 4).

Dividing all terms of Eq. 22 by 3plDP, all terms of Eq.

23 by plD3
p and recalling that the volume of the body is

given by B = pD3
p /6, the equations of balance of all

hydrodynamic forces and moments result in the following

relations:

V ¼ UO þ VS þ Vt; ð24Þ
x ¼ XO þ xb; ð25Þ

where

Vt ¼
ðqp=q� 1ÞD2

p

18m
g ð26Þ

is the velocity of gravitational settlement of the body and

xb ¼
b� g

6m
ð27Þ

is the angular velocity of the body induced by the hydrostatic

buoyancy moment which depends on three Euler angles (see

e.g. Fig. 4 for a two-dimensional case). In the state of an
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equilibrium larva does not rotate and three Euler angles can

be found from the three scalar equations following from one

vector Eq. 25 when its left-hand side is zero:

XO þ xb ¼ 0: ð28Þ

The linear and angular velocities, Eq. 24, 25, can be

substituted into the right-hand side of Eqs. 6 and 7, yielding

a system of six ordinary differential equations with respect

to three coordinates of the center of mass of the larva and

three Euler angles.

Equations of larval motion in two-dimensional linear

shear and Poiseuille flows

Consider the motion of a larva in the plane O1XZ. For such

two-dimensional flow the vector of translational velocity

has two non-zero components VX and VY whereas the

vector of angular velocity x has only one component

xy : x. The fluid velocity vector U is directed along the

longitudinal axis and varies linearly with the coordinate Z:

U ¼ 2Ua
Z

h
jX : ð29Þ

Here h is the distance above the bottom where the fluid

velocity reaches the value 2Ua (Fig. 5). Relation 29 can be

interpreted in several ways. It can represent a flow

unbounded from above (linear shear flow), a flow where

the fluid velocity varies linearly within a layer of depth h

and is constant and equal to 2Ua outside the layer (linear

boundary layer, Schlichting 1979) and a flow between two

plates, where one of them is fixed and the other one moves

with velocity 2Ua (Couette flow). In all three cases the

characteristic geometric scale of the flow h and the

V

aU

3 DF V

C

3 ( )DF U V

A

A

O

BF

GF

B

D p a

T p s

M

SM

Substrate

Fig. 4 Forces and moments acting on a body with an axis of symmetry

AA0, which passes through the centroid of the body. In steady or slow

motion the sum of the surface hydrodynamic force FD and of the self-

propulsion force is zero. The body moves with the velocity V, which

represents a geometrical sum of the swimming velocity VS and the fluid

velocity Ua, calculated in the centroid C. The center of gravity and

buoyancy do not coincide. The buoyancy moment calculated about the

center of gravity is MB ¼ FB OC
�!��� ��� sin w; where OC

�! ¼ b is the radius

vector of the center of buoyancy C in the fixed to the body coordinate

system. For a fully submerged body C is the so-called metacenter and

the distance OC is the metacentric height (terminology, which was

introduced by Euler in his classical work on the theory of ships). For a

body with a posterior-anterior axis of symmetry the surface force FD

acts along the axis AA0. If the vector of the self-propulsion force also

acts along the same axis then the total moment of the both reactions

about any point is obviously zero. Due to the shear stress torque

moment MS the body rotates in the clockwise direction, whereas the

buoyancy moment MB acts in the counter-clock direction. If the

magnitudes of the moments are equal, then the body approaches the

substrate without rotation. If the shear induced torque moment exceeds

the maximal value of buoyancy moment then the body and the vector of

the self-thrust FT also rotate
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characteristic velocity Ua determine the characteristic time

h/Ua. For further analysis, where necessary we shall use

non-dimensional coordinates and non-dimensional time

scaled with these reference values.

Using Eq. 29 to calculate the vorticity gives the fol-

lowing system of differential equations of motion of a larva

in a linear shear flow:

dn
ds
¼ 2fþ 1

k
cos w; ð30Þ

df
ds
¼ � 1

k
sin w� Vt; ð31Þ

dw
ds
¼ 1� e sin w; ð32Þ

where n = XO /h, f = ZO /h, s = Ua t/h

e ¼ gbC

6m
h

Ua
; ð33Þ

k ¼ Ua

VS

; ð34Þ

Vt ¼
Vt

Ua
; ð35Þ

and

Vt ¼ �
ðqp=q� 1ÞD2

p

18m
g: ð36Þ

Consider now a laminar flow in a tube of radius R with

an axis directed along the axis O1X of the fixed in space

coordinate system (Poiseuille flow) (Fig. 6). The vector of

the fluid velocity in the tube is represented as follows:

h
x

y

z

TF

O

X
1

O

T
F

Z
2Ua

Fig. 5 A larva in a linear shear

flow. The gray circle denotes a

larva-particle, and the thick gray

arrow indicates the vector of its

self-thrust, which rotates due to

the larva’s rotation

D 1O X

Z

U

Y

pD
x

yz

TF

O

Fig. 6 Larva in the Poiseuille

flow; D is the diameter of a tube

or the width of a channel. A

rigid particle, which is located

below the axis of the tube

rotates with a positive angular

velocity x
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U ¼ 2Ua 1� Y2 þ Z2

R2

� �
jx: ð37Þ

The flow in the plane of symmetry of such a tube is

identical to the flow in the two-dimensional Poiseuille

channel of width D = 2R:

U ¼ 2Ua 1� Z2

R2

� �
jx: ð38Þ

For a two-dimensional Poiseuille flow the non-dimensional

equations of motion of a larva are the following:

dn
ds
¼ 2ð1� f2Þ þ 1

k
cos w; ð39Þ

df
ds
¼ � 1

k
sin w� Vt; ð40Þ

dw
ds
¼ �2f� e sin w; ð41Þ

where

e ¼ gbC

6m
R

Ua
ð42Þ

n = XO/R, f = ZO/R and s = Uat/R. Note that for the lin-

ear shear and Poiseuille flows we use the same notations

for the non-dimensional coordinates and time. That should

not lead to confusion because in each particular case the

meaning of the variables is clear from the context of the

problem.

The differential equations of motion of a larva can be

solved analytically or numerically. In both cases they must

be provided by initial conditions, i.e., by coordinates of a

larva and its Euler angles (the pitch angle for a two-

dimensional case).

Randomness of initial conditions

Different initial conditions of the equations of motion of a

larva result in different larva’s trajectories. Our goal is not

only to calculate the trajectories but mainly to estimate the

probability of contact, a number. This single number is a

functional of all trajectories. However, the initial coordi-

nates of a larva and its Euler angles are unknown because

they are random. In the absence of detailed experimental

data, we assume that all possible initial coordinates of a

larva and its initial Euler angles are random numbers which

are distributed uniformly within corresponding physically

meaningful ranges (see for instance, Fig. 7). The number of

possible trajectories of a larva is infinite. Therefore, in the

consequent analysis we illustrate only the most represen-

tative of them, those, which allows us to analyze only the

principal features of the contact phenomenon.

Results

Larval trajectories in a linear shear flow

Within the system of the three differential equations 30–32

consider first the isolated equation 32, which involves

parameter e given by Eq. 33. This differential equation has

a closed form analytic solution, which is not provided here

because of its complicity. It follows from this solution that

the behavior of the angle of pitch w(s) depends whether the

parameters e is larger than one or smaller than one.

For e [ 1 equation 32 has two steady state solutions

corresponding to zero angular velocity dw/ds = 0:

we ¼ arcsin
1

e

� �
ð43Þ

and

weu ¼ p� arcsin
1

e

� �
: ð44Þ

It can be shown that for the first of them, Eq. 43, the

equilibrium is stable and for the second one, Eq. 44, the

equilibrium is unstable. A larva can keep the angle of the

direction of motion weu only if maintains its orientation in

space deliberately, due to certain biotic causes such as

responds to light or chemical cues. These processes are

excluded from our consideration.

An analytic solution of the equations of motions 30–32

for a larva, which moves in a vertical plane without rota-

tion with an angle of pitch given by Eq. 43 is the following:

0

1

0

TF

0

0

Fig. 7 Larvae entering a linear shear flow with different coordinates

f = ZO/h and different angles of turn w0 (0 \ f\ 1, -a \w0 \ a,

a \p). Due to the shear each larva rotates and the vector of its self-

thrust FT also rotates. Circles indicate larvae, the arrows connected to

the Circles indicate the initial directions of the self-thrust, and curves

the possible variety of larval trajectories
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n ¼ 2ðf0 þ
1

2k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1=e2

p
Þs� 1

ek
þ Vt

� �
s2; ð45Þ

f ¼ f0 �
1

ek
þ Vt

� �
s; ð46Þ

where f0 = ZO
0 /h is the initial coordinate of a larva ZO

0

which is scaled with the characteristic length of the

problem. From Eq. 46 it is possible to find the time tcontact,

which is necessary for a larva to reach the bottom if its

initial coordinate is ZO
0 :

tconact ¼
Z0

O

ðVS sin we þ VtÞ
: ð47Þ

From Eq. 47 follows an important conclusion. A larva

can be neutrally buoyant or even positively buoyant but

nevertheless is can approach the bottom as long as the total

vertical velocity VS sin we + Vt is positive. The motion of

a larva is driven by its self-propulsion and by two

hydrodynamic moments, the torque moment induced by

the shear of the flow and by the buoyancy moment, which

may eliminate each other. It should be stressed, that in

reality the fluid velocity field is inevitably disturbed and a

larva will oscillate around the stable equilibrium position

with non-zero angular velocity of pitch. We assume that

the disturbances are sufficiently large in order to invoke

self-propulsion yet sufficiently small not to change the

trajectory.

For e \ 1 a larva performs an oscillatory motion, which

can be analyzed numerically. Some numerical calculations

of trajectories of a larva are shown in Fig. 8 where it is seen

for realistic values of the parameter e a larva with self-pro-

pulsion always reaches the bottom and for an infinitely long

substrate contact always takes place, i.e., P = 1. However, in

many such cases a larva has to travel a relatively large dis-

tance in the horizontal direction which sometimes can not be

provided in experiments, in particular, in laboratory flumes

or tubes. Possibly, that has to be taken into account in

comparisons of mathematical models of larval contact with

results of experimental observations.

Consider now a larva which approaches to a vertical

substrate and moves in horizontal plane. In such a case it is

logical to assume that the effective weight of a larva and

the buoyancy moment do not influence the process of

motion. Assume for simplicity that the boundary layer of a

Fig. 8 Trajectories of a larva in a linear shear flow. The vertical

coordinate ZO and the horizontal coordinate XO are normalized with

the characteristic geometric scale of the flow h yielding f and n,

correspondingly. The gravity force acts towards the bottom f = 0.

Coordinate n = 0 correspond to the initial moment of time when the

initial angle of turn is zero. For all calculations the ratio k of the flow

velocity Ua and the swimming velocity VS is 15. The type of a

trajectory depends on the parameter e, which represents the ratio of

the hydrostatic restoring buoyancy moment and the torque moment

induced by the shear stresses on the surface of a larva. Whether

contact is possible or not depends on the length of a substrate. a For

e[ 1 a larva moves without rotation with an angle of pitch

w = arcsin (1/e). For k = 15 the trajectories crosses the bottom in

the range n[(20–160); b for 0.5 \ e\ 1 a larva approaches to the

bottom in an oscillatory manner. The distance which a larva covers in

the horizontal direction prior of making contact is of the same order of

magnitude that for 1 \ e\ 5; c for 0.05 \ e \ 0.2 a larva moves in

an oscillatory manner. The distance which a larva covers in the

horizontal direction prior of making contact is rather large

c
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vertical body can be approximated by a linear boundary

layer. In such a case, we can analyze the motion of a larva

in a linear shear flow according to equations 30–32 with

e = 0 and Vt ¼ 0; correspondingly.

Assume that at the initial moment of time t = 0 the

spatial and angular coordinates of a larva are given by f0

= ZO
0 /h and w(0) = 0. Direct analytic integration of Eq.

30–32 for e = 0 yields the following solution for the

coordinates of a larva and its angle of turn:

n ¼ 2 f0 �
1

k

� �
wþ 3

k
sin w; ð48Þ

f ¼ f0 �
2

k
sin2 w

2
; ð49Þ

where

w ¼ Uat

h
: ð50Þ

Trajectories of a larva in a linear shear flow, which start the

motion with different initial coordinates f0 and zero initial

angle of turn w(0) are plotted in Fig. 9.

In a linear shear flow, a self-propelled larva performs an

oscillatory motion: it rotates with constant angular veloc-

ity, and moves not only in the longitudinal but also in the

transversal direction across the mean stream. According to

Eqs. 48, 49 the condition of contact depends on the initial

coordinate f0 and the velocity parameter k given by Eq. 34.

From Eq. 49 it follows that if the angular velocity of a larva

is relatively small but the self-thrust is relatively large, the

larvae will reach the substrate prior to making a full turn.

This scenario takes place when k = Ua /VS B 2. If the

angular velocity is relatively high and the self propulsion

force is relatively weak, a larva will make a full turn prior

to reaching the bottom, which take place for k\ 2. The

qualitative behavior of a larva in a linear shear flow is

illustrated in Fig. 10.

Probability of larval contact in a linear shear flow

In order to obtain a simple formula for the contact proba-

bility P, consider first a large number of similar larvae

entering the shear flow with the same zero initial angle of

pitch w(0) = 0; and assume that initial coordinates of larvae

f0 are distributed within the range (0,1) randomly and

uniformly. For the sake of simplicity, it is assumed also

that outside the layer of thickness h (f = 1) the flow is

irrotational and in such irrotational flow a larva moves

along streamlines parallel to the fixed wall f = 0. To

analyze the contact probability, note that, at the moment of

contact the vertical coordinate f(s) = 0.

It is seen from Eq. 49 that for any k B 2 the trajectory of

a larva always crosses or touches the bottom independently

2Ua(a)

(b)

Fig. 10 Trajectories of a larva with a zero metacentric height moving

in a linear shear flow. The fluid velocity at f = 1 is constant, at f = 0

it is zero. a A larva reaches the bottom; b a larva makes a full turn

prior of reaching the bottom. Circles indicate the consequent positions

of a larva, the straight gray arrows signify the direction of thrust and

the curved gray arrow the direction of the rotation of a larva. Type (a)

motion takes place for k = Ua /Vs B 2; type (b) motion takes place

for k [ 2
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Fig. 9 Trajectories of a larva with a zero metacentric height moving

in a linear shear flow. The fluid velocity at f = 1 is constant, at f = 0

it is zero. A larva starts the motion with different initial coordinates

and zero angle of pitch. In this particular example, the velocity

parameter k = Ua/VS is equal to 10. A larva with initial coordinates f0

= ZO
0 /h [ 0.2 does not reach the bottom; whereas a larva with initial

coordinates f0 = ZO
0 /h B 0.2 does reach the bottom. In this example,

the vorticity has a constant sign and rotates a larva in the same

direction
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on the value of the initial coordinate f0, which means that

contact always takes place and hence P = 1. For k[ 2, the

trajectory of a larva crosses or touches the substrate only if

f0 B 2/k. In non-dimensional coordinates the thickness of

the linear boundary layer (or the width of the Couette

channel) is one. For a sufficiently large number of larvae

distributed uniformly within the total range [0,1] the

probability of contact can be determined as the ratio of

the length of the segment [0, 2/k] and the length of the

whole segment [0, 1] yielding the probability of contact as

P = 2/k. The above results can be summarized in the

following remarkably simple form:

P ¼ 1 for k� 2;
2=k for k[ 2:

�
ð51Þ

From Eq. 51, it follows that for a given swimming

velocity of larvae the probability of contact decreases as

the characteristic flow velocity increases. In most of

available experiments with larvae attaching in tubes the

dependence of the probability of settlement on the

characteristic flow velocity is similar. Starting from

the work of Crisp (1955), it is common to explain this

experimental fact by the longitudinal viscous hydro-

dynamic force acting on a larva in the moment of

attachment. It is believed that this force is associated

with the wall shear stress. We suggest here a different

additional explanation. Our analysis shows that the

decrease of the attachment probability can be caused by

the kinematics of contact, not only by wall shear stress.

The above results were obtained under the assumption

that all larvae enter the vortical flow with the same zero

initial angle of pitch. In reality not only the initial coor-

dinates but also the initial angles of pitch are random. To

verify the robustness of the mathematical model to varia-

tions in the initial angle of pitch, assume that each i-th larva

enters the vortical flow with an angle of pitch w0i (i = 1,2,

...) and that all such angles are distributed randomly and

uniformly within a certain range [-a, a]; a = 0 corre-

sponds to the vector of the self-thrust pointing in the flow

direction and a = p to the vector of the self-thrust pointing

against the flow direction.

The mathematical analysis of the contact probability for

a=0 is given in Appendix I, formulas I.2–I.3. Plots of

these formulas are shown in Fig. 11, which illustrate that

the initial angle of pitch does not drastically influence

contact probability. In this sense formula 51 is robust.

Larval trajectories in a Poiseuille channel with vertical

walls

The trajectory of a larva in a plane Poiseuille flow is

described by equations 39–41 which have no an analytic

solution but can be solved numerically for various initial

conditions and values of the problem parameters. Examples

of trajectories of a neutrally buoyant larva with zero

metacentric height are plotted in Figs. 12–14. The influ-

ence of the initial coordinate and of the initial angle of

pitch on the trajectory of a larva is illustrated in Fig. 12.

The influence of the flow parameter k on the type of a

trajectory of a larva is illustrated in Fig. 13. Typical tra-

jectories of a larva are plotted in Fig. 14.

In would be interesting to compare the simulated tra-

jectories of larvae and those measured experimentally in a

linear shear or plane Poiseuille flows. Unfortunately, we

are not familiar with such experiments data. However, the

flow between two coaxial cylinders with a small the gap

between them reproduces roughly the flow between two

infinite parallel plates. Motion of larvae in a flow between

two coaxial cylinders was observed by Pasterank et al.

(2004).

According to the experimental results by Pasternak et al.

(2004) larvae in a laminar flow between two cylinders

move along oscillatory trajectories with amplitudes

depending on the flow parameter k = Ua /VS (Fig. 15a,b);

whereas small passive particles move along a straight line

(Fig. 15d). For relatively small ratios of the flow parameter

k\ 0.8 the amplitudes of oscillations are large and contact

takes place; for faster flows, for lager values of the flow

parameters k [ 0.83 the amplitudes of oscillations are
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Fig. 11 Probability of larval contact in a linear shear flow with the

wall f = 0 where the fluid velocity is zero (on the line f = 1 the fluid

velocity is constant). Larvae are neutrally buoyant, the metacentric

height is zero, different lines pertain to different ranges of the initial

angles of pitch distributed randomly in the range - a\w0 \ a. The

values of a do not influence the results drastically. In the range

0 \ k\ 2 the contact probability attains the maximal possible value

and then decreases asymptotically as k increases. That means that for

a given larvae swimming velocity the contact probability is negatively

correlated with the characteristic flow velocity
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small, and larvae do not make contact. Such patterns of

motion are in full qualitative agreement with theoretical

results presented in this paper (Fig. 14). It is interesting to

note that in still water the trajectories of larvae are dras-

tically different from those in the stream (Fig. 15c), a fact

that has been discussed by Butman et al. (1988).

Probability of larval contact in a plane Poiseuille flow

The calculations of contact probability for the plane

Poiseuille flow are given in Appendix II, Eqs. II.5–II.6.

Below, we provide only a simple formula for the proba-

bility of larval contact when all initial coordinates of larvae

represent random numbers distributed uniformly across the

channel and when all initial angles of pitch are zero:

P ¼ 1 if k� 2

1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2=k

p
if k[ 2

�
: ð52Þ

For the case when the initial angles of pitch vary

randomly and uniformly in the range of given angles

|a| B p, the contact probability as a function of the flow

parameter k is plotted in Fig. 16. Similarly to the case of a

linear shear flow, formula 52 is robust, i.e., contact

probability is not affected drastically by the range of the

initial angles of turn.

Comparison of Figs. 11 and 16 shows for both, a linear

shear and the plane Poiseuille flows the contact probability

is a decaying function of the ratio of the characteristic flow

velocity and the swimming velocity. This is not surprising

because in both cases contact results from the same phys-

ical reasons, the vorticity, rotating larvae and their self-

propulsion, which changes the direction of action due to

the rotation.

Larval motion in a laminar tube flow

In a tube, the rotating vector of the self-thrust does not

remain in the same plane, thus leading to a three-dimen-

sional motion of the larva. The three-dimensional

trajectories can be found as a numerical solution of the

equations of motion 6–7 and 24–25. An example of the

computed numerically typical trajectory of a larva in a tube

is shown in Fig. 17. From the results of systematic

numerical computations, it follows that in a laminar tube

flow a larva undergoes an oscillatory motion of a helix-like

type, and that the parameters of the trajectory strongly

depend not only on the ratio of the flow velocity and the

larva’s swimming velocity but also on the random initial

conditions of the problem, i.e., on the two initial coordi-

nates (XO, YO) and Euler angles, respectively.

In order to calculate the probability of contact in a tube

Monte-Carlo method is used here (Sobol 1994). The

method is based on considering a multitude of trajectories

of larvae with different random initial conditions and by
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Fig. 12 Trajectories of a larva in a Poiseuille channel of width

D = 2R (n = XO /R , f = ZO /R ). Due to the symmetry of the flow

only positive initial coordinates of a larva are considered. The fluid

velocity is zero at the walls f = ±1. All calculations are performed

for the same velocity parameter k = Ua /VS = 10. The larva is

neutrally buoyant and its metacentric height is zero. The solid lines

represent a larva entering the flow with different initial coordinates

but with the same zero initial angle of pitch. A larva performs an

oscillatory motion above its corresponding initial coordinate. Only a

larva with an initial coordinate f [ 2/k may reach the wall. If the

initial pitch angle is non-zero then a larva may oscillate around the

axis of the channel moving with an angular velocity, which changes

the sign according to the sign of the flow vorticity. For instance, the

dashed line pertains to a larva, which starts the motion in a channel

with an initial coordinate f0 = 0.1 and an initial angle of pitch

w0 = 40o. It performs oscillation around the longitudinal axis. It is

interesting to compare the trajectories of larvae in a linear shear flow

(Fig. 9) and in the two-dimensional Poiseuille flow. In a linear shear

flow a larva moves towards the lower wall and in the Poiseuille flow

towards the upper wall, because the sign of the vorticity of these two

flows is the opposite if we consider a larva with a positive initial

coordinate ZO. In the linear shear flow a larva rotates in a clockwise

direction and in the Poiseuille channel it rotates in the counter-clock

direction
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verifying how many of them cross the wall of the tube. The

principles of generation of random initial conditions for a

tube are given in Appendix III.

The algorithm for calculating of the contact probability of

larvae in a tube is as follows: for each given k = Ua/VS the

equations of motions motion of a larva 6–7 and 24–25 with

random initial conditions are solved numerically N times;

the ratio of n simulation, where contact took place, and the

total number of N runs determines the seeking probability, P

= n/N. In practical computations, the number of simulated

larvae was taken as 2,000. This number has been found by

increasing the initial number N = 200 by 200 until the result

of computation for two maximal consequent N gave close

results with a relative error within 10% (for k \ 5 it does not

exceed 5%). Giving that in available experiments the

accuracy of the measured settlement probability is limited

and that computations of 2,000 trajectories of larvae for each

k are time consuming, such an error can be considered as

quite permissible for purely qualitative comparisons of

experimental and theoretical results.

Prior to formulating the criteria of larval contact in a

tube, note that so far we have considered a larva as a point

object. However, due to the attachment devices of propa-

gules they initiate contact when the distance d between the

wall and the center of mass of a larva is estimated roughly

as Dp/2 \ d \ 3Dp/2 (Abelson and Denny 1997). In such a

case, the criterion of contact is described by an inequalityffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y2

O þ Z2
O

p
R

[ 1� d; ð53Þ

where d = d/R is a small quantity varying in the range Dp/

D\ d\ 3Dp/D. If Eq. 53 is satisfied then larvae do contact

the wall; otherwise contact does not takes place. In the

numerical simulation presented here, the computations of

larva trajectories were continued until contact took place

or, alternatively, until the larva had traveled along the tube

a distance not less than about 200 tube diameters, which is

the ratio defining the physical length of a tube in most

of the relevant experiments. The results of systematic
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Fig. 13 Trajectories of a larva in a Poiseuille channel of width

D = 2R for different values of the flow parameter k = Ua/VS

(n = XO/R, f = ZO/R). Due to the symmetry of the flow only positive

initial coordinates of larvae are considered. The circles indicate a

larva, arrows—the vectors of the self-thrust and its altering directions.

a k = 1, w0 = 0—a larva reaches the wall; b k = 4, w0 = 0—a larva

makes a full turn prior to reaching the wall
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Fig. 14 Typical trajectories of a self-propelled larva in the Poiseuille

channel. Cases A and C pertain to k = Ua /VS B 2; B and D to k = Ua

/VS [ 2. A A larva starts the motion above the axis of the channel

with zero initial angle of turn and rotates with an angular velocity that

is determined by the flow vorticity. Due to the rotation, the vector of

the self-thrust also rotates and pushes the larva towards the upper

wall. The larva reaches the wall prior to making a full turn. B A larva

starts the motion with zero initial conditions and makes a full turn

prior to reaching the wall. C A larva starts the motion close to the axis

of the channel with a non-zero angle of turn. The self-thrust moves

the larva toward the lower wall and it enters the area of the flow

which rotates it in a counter-clock wise direction. The rotating vector

of self-thrust changes the direction toward the upper wall and moves

the larva there. D A larva starts the motion above the axis of the

channel but reaches the lower wall because the initial angle of turn is

relatively large and the magnitude of the flow vorticity is insufficient

to change the direction of the self-thrust in the direction toward the

upper wall
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numerical computation show that if the flow parameter k
varies between 0 and 15 then larval contact in a laminar

tube flow takes place within 50 tube diameters.

The results of systematic numerical computations show

that the qualitative behavior of the contact probability for a

linear shear, the plane Poiseuille, and the three dimensional

Poiseuille flows is similar, i.e., for all the three flows the

contact probability is a decaying function of the flow

parameter k.

In the absence of experimental measurement of contact

rates for the three studied flows we compare our theoretical

results with experimental measurements of the attachment

probability. Although the contact probability is only an

upper bound of the attachment probability, the correlation

(positive or negative) between the two probabilities is of

great interest.

Qian et al. (1999) observed the attachment of Hydroides

elegans and Bugula neritina in 2 m long tubes for laminar

and turbulent flow regimes. We compare the results of the

mathematical simulations with the experimental results for

the laminar flow.

In our numerical simulations the larvae diameters and

their swimming velocities were taken from Qian at al.

(1999) for Hydroides elegans and from Wendt (2000) for

Bugula neritina.

The B. neretina is close to a spheroid with an aspect

ratio of about 1.1. Its equivalent diameter is about 243 lm,

the swimming velocity is close to 0.47 cm/s and the Rey-

nolds number is about 1.2. For such Reynolds numbers the

Stokes’ formula for the drag of a small sphere underesti-

mates its value by 15%. Given the nature of the problem
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Fig. 16 Probability of larval contact in the Poiseuille channel. Larvae

are neutrally buoyant, the metacentric height is zero, different lines

pertain to different ranges of the initial angle of pitch which is

distributed randomly in the range -a \w0 \ a. The values of a do

not influence the results drastically. In the range 0 \ k\ 2 the

contact probability attains the maximal possible value and then

decreases asymptotically as k increases. That means that for a given

larvae swimming velocity the contact probability is negatively

correlated with the characteristic flow velocity

Fig. 15 Typical trajectories of

larvae of Hetersacuss dolffusi in

a plume in the absence of host

(from Pasternak et al. 2004 by

permission of Oxford University

Press). Trajectories begin at the

X and end with a small arrow.

Horizontal and vertical axes are

given in mm. a Larva in

flow,k ¼ Ua=VS� 0:8; b larva

in flow, Ua=VS [ 0:8; c larva in

still water; d passive particle in

flow. The average length of

larvae of H. dolffusi in the

experiment was about 270 lm.

Thus, the amplitudes of the

trajectory oscillations exceed

this characteristic length by

orders of magnitude. The type

of trajectories (a) and (b)

correspond to those shown in

Fig. 14, curves B and C. Note

that trajectories of a passive

particle and a larva in still water

differ drastically from those

demonstrated by living larvae in

a stream
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for B. neretina such an error can be considered as per-

missible for qualitative comparisons.

The ratio of the length and beam of the approximately

spheroidal H. elegans is about two (Walters et al. 1997).

For H. elegans with an equivalent diameter of 163 lm and

swimming velocity of about 1 cm/s the Reynolds number

is about 1.6. Concerning slender species H. elegans, it was

already mentioned above that an elongated elliptical

particle moves in the tube flow along an oscillatory

trajectory even without self-propulsion. Whether such a

particle may contact the wall of a tube for small values of

its effective weight and what is the probability of contact in

this case is a matter for detailed analysis, which is beyond

of the scope of the present study. Although in our theory,

we consider spherical larvae, we find it instructive to

compare the theoretical and experimental results for

H. elegans because it is possible that the self-propulsion

force influences larval trajectories more significantly than

their non-spherisity.

It should be stressed that we do not intend to compare

the experimental and theoretical results quantitatively.

Numerous uncertainties of the problem parameters, the

individual behavior of a larva, its latency to react to flow

variations, its age make this task difficult. Therefore, as it

was already stressed, we compare the theoretical and

experimental results only qualitatively.

The theoretical results and the experimental data are

compared in Fig. 18. For both species the plots demon-

strate an obvious correlation between the probabilities of

the two different phenomena, the attachment (experiment)

and the initial contact (theory), except in the range of low

ratios k = Ua /VS.

In the range of the flow parameter k [ 2 the theoretical

values are somewhat higher than the experimental ones.

Several reasons may explain this discrepancy. First, a larva

making contact can leave a substrate without attaching

because of high shear stress on the wall. In our work we

assumed that the length of the tube is infinite; whereas in

experiments the tubes were 2 m in length. Although in

those experiments most of the settled larvae were found

within the first 0.5 m of the tube, it is possible that some of

larvae, especially those which had explored the substrate

by making several contacts, left the tube because of the

limited time of residence.

In the range k\ 2, where the theoretical values of the

contact probability are maximal, the experimental values

are uncertain and vary between zero and one. Paradoxi-

cally, this discrepancy may be considered as an argument

in favor of the proposed theory rather than as an obstacle to

it. According to the mathematical model developed here

larvae do not attach if they do not use their self-propulsion

abilities. According to observations of Crisp (1955) there is

a range of low shear rates where larvae do not use thrust

and do not attach. On the axis of the tube the vorticity is

zero and it is possible that larvae, which are located close

to the axis, rotate with such a small angular velocity that it

does not trigger the self-thrust. We have assumed, how-

ever, that larvae use their self-thrust for even very small

values of the flow vorticity. That may be the possible cause

of the discrepancy between the theoretical results and

experimental measurements in the range 0 \ k\ 2.
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Fig. 17 A typical three-dimensional trajectory of a larva in a circular

tube of radius R(n = XO/R, g = YO/R, f = ZO/R), k = Ua/VS = 10).

a The projection of the trajectory on the O1XZ plane; b the projection

of the trajectory on the O1YZ plane; c three-dimensional trajectory
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Discussion

We made an attempt to explain larval contact in laminar

flows as a result of the combined action of the flow vor-

ticity and of the self-propulsion of a larva. We studied

larval contact in three types of laminar flows: in a two-

dimensional linear shear flow, in the two-dimensional

Poiseuille channel, and in the three-dimensional Poiseuille

tube. According to the presented here mathematical model

the probability of contact is a decaying function of the ratio

of the characteristic flow velocity and swimming velocity

of larva.

The simulated values of the contact probability for a

tube flow are in satisfactory qualitative agreement with

experimental measurements of the attachment probability.

Most experimental observations confirm the decay of

attachment rate as the flow velocity increases. The com-

mon explanation of this experimental fact is well known. It

is believed that shear stress on the body of a larva after it

made contact is strongly associated with the wall shear

stress. Because in a tube flow the wall shear stress is pro-

portional to the corresponding wall rate of shear, Crisp

(1955) suggested that the probability of larval settlement is

related to the rate of shear.

However, in tube flows the rate of shear, the shear stress

and the vorticity are proportional to the same gradient of

the axial velocity calculated in the radial direction. This

similarity can easily obscure the actual physical relation

between the contact and attachment phenomena. In our

interpretation, they are related—but governed by two dif-

ferent hydrodynamic characteristics of the flow—one by

the flow vorticity, determining contact, and the other one

by the wall shear stress that is responsible for the ultimate

attachment.

The mathematical model is formulated here for laminar

flows. It is likely, however, that it can be applied to certain

(not all) natural flows. The corresponding examples are

given in Figs. 19–21.

According to the main assumption of our work, to

attach, at least in laminar flows, larvae must use their self-

thrust. In such a case a question arises how propagules

without motility, e.g., many of almost spherical aglal

spores can colonize vertical substrates and, in particular,

rocky shores (Denny and Shibata 1989). The most likely

explanation is that turbulent mixing will cause larval

transport. Our model is not intended to describe such

processes.

Another interesting question is how larvae attach in still

water, a case that can be reproduced only under laboratory

conditions. Certain types of larvae even in still water are

able to reach a substrate by employing gravitational sinking

or self-propulsion. However, larval behavior in still water

is drastically different from that in flow (Butman and

Grassle 1988; Pasternak et al. 2004) and, obviously, our

mathematical model is not intended to describe such pro-

cess either.

Our mathematical model is restricted by larval forms

with a small degree of non-sphericity and with hydrody-

namically smooth surfaces. Real larvae are non-spherical
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Fig. 18 The probability of attachment (experiment) and the proba-

bility of contact (theory) for a B. neritina and b H. elegance. The

diameter of the experimental tubes is D = 10 mm. The theoretical and

experimental results are compared in the range of experimental flow

velocities corresponding to the laminar regime (Ua \ 10 cm/s). The

contact probability is calculated for discrete values of the flow

parameter k with a step k = 1.0. It is assumed that larvae are neutrally

buoyant and their metacentric height is zero. The results of

mathematical simulations by Monte-Carlo method are depicted by

stars, which are connected by a solid line. The accuracy of Monte-

Carlo simulations is within 10%. The length, beam and the swimming

velocity of B. neritina are estimated as 271 lm, 231 lm and 0.47 cm/s,

respectively. The ratio of the diameter of larvae to the radius of the

tube is estimated as d = 0.035. The length, beam and swimming

velocities of H. elegance are estimated as 275 lm,125 lm and 1 cm/s,

respectively, d = 0.006. In the area between the vertical axis k = 0

and vertical lines k = 1-2 the experimental values of the attachment

probability are uncertain because larvae may or may not use the self-

thrusts
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and non-smooth. As long as we remain within the hydro-

dynamics of low Reynolds numbers, the slenderness of

larvae and small variations of their form can still be

included into the mathematical model (Happel and Brenner

1983). However, it is likely that analysis of the dynamic of

a slender, buoyant and self-propelled larva of an arbitrary

form which moves in a vortical laminar along a curvilinear

trajectory can be tackled only by solving numerically the

full nonlinear Navier–Stokes equations.

The analysis presented here is carried out for laminar

flows. For turbulent flow with high turbulent intensity and

low mean flow velocity the model proposed here can not be

applied directly. However, as it was already discussed

above many relevant natural flows, where larvae settle, can

be considered as partially laminar or can be characterized

by a low level of turbulence. In this respect the basic

assumption of our model are valid although obviously

restricted.

Turbulent wake

Turbulent wake

Flow

Fig. 20 Bodies with a well-defined flow separation area which is

indicated by a thin black arrow. The thick white arrow on the left

shows the direction of the ambient flow. The wakes of the bodies are

turbulent; whereas the boundary layer on their front upstream part

may be laminar. Examples. The critical Reynolds number for a

smooth sphere when the flow on its downstream rear part becomes

turbulent is about 3 9 105, which corresponds to the sphere diameter

of an order of 5 m and an ambient fluid velocity of an order of 6 cm/s.

For a slender smooth body like an ellipsoid with an aspect ratio lager

than six the critical Reynolds number is of order of 106, which

corresponds to the length of a body of about 16.5 m and to the fluid

velocity of about 6 cm/s. Even on relatively large bodies the flow may

be fully laminar or laminar on its upstream front parts. Of course,

roughness of the body, non-steadiness of the flow and external

turbulence may change these estimates but, nevertheless, the order of

magnitude of the above numbers is generally accepted (Schlichting

1979)
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Fig. 19 Larva-particle in the laminar boundary layer of a thin plate.

The velocity profile in the boundary layer is a nonlinear function of

the coordinate normal to the plate. It can be approximated by a linear

dependence, yielding a linear shear layer, or by a parabola relating to

the velocity profile in Poiseuille flow. The boundary layer in the

vicinity of the leading edge is laminar although at the rest of it

the flow may be turbulent. The critical Reynolds number when the

laminar flow on a plate turns into a turbulent flow is of an order of

3 9 105 which is considered as a lower bound of the critical Reynolds

number. For flows with very small external perturbations the critical

Reynolds number can be higher by an order of magnitude. Examples.

For the fluid velocity of an order of 3 cm/s the length of the laminar

region on a flat plate is of an order of 10 m. The thickness of the

boundary layer on such a plate after the first 11 cm from the leading

edge is more than 1 cm. This is by two orders of magnitude higher

than the size of a larva with a typical length of 100 lm. The laminar

boundary layer of a flat plate is a very good approximation of the

boundary layer of a slender body
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In our work, we separated biotic and abiotic factors,

although it is known that some larva may respond to light

and gravity by correcting their body orientation. In this

case the effect of vorticity on the body rotation and its

trajectory may be less significant.

It must be stressed that we did not solve the problem of

contact phenomenon in its entire complicity. We did not

intend to do it. We have chosen only one important aspect

of the problem and studied it by using a simplified

hydrodynamic model of the contact phenomenon. More

theoretical and experimental works are needed in this

direction.

In conclusion we wish to mention another important

implication of our work, which was suggested by one of the

anonymous reviewer of the manuscript. Examples of lam-

inar flows, in which self-propelled organisms are small

compared to the geometrical scale of the shear flow,

include bacteria and protists in biofilms, and bacteria or

motile parasites in internal vessels of other organisms.
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Appendix I

In this Appendix, we analyze the contact probability for a

linear shear flow Eq. 29 bounded by a fixed wall with a

coordinate Z = 0. The flow can be unbounded from above,

it can represent a flow between two walls, when one of

them moves or it can be viewed as linear boundary layer. In

all the three cases the characteristic linear scale of the

problem is h and the characteristic velocity is Ua. These

two parameters allow us to define the non-dimensional

time as s = Ua t/h and the non-dimensional coordinates of

the larva n = XO/h and f = ZO/h, correspondingly. In non-

dimensional coordinates the boundaries of the Couette flow

are represented by lines f = 0 (lower boundary) and f = 1

(upper boundary).

The dimensionless equations of motion Eqs. 30–32 can

be expressed in a form of a parametric dependence as

f ¼ 2

k
C � sin2 w

2

� �
; ðI:1Þ

where C is a constant of integration, which is determined

by initial conditions (f0, w0).

Expression I.1 represent an infinite number of curves

because the number of constants of integration is also

infinite. If we plot all such curves f = f(w,C) together

(Fig. 22) we obtain a diagram which can be used for ana-

lyzing the contact probability. For each particular constant

Ci, we have a particular curve fi = f(w,Ci). The corre-

spondence between the constant and the curve (or the curve

and the constant) is one-to-one.

Each curve of the diagram in Fig. 22 represents a

coordinate of a particle f as a function of its angle of pitch,

which varies from -p to p. Consider, for instance, a par-

ticular value of the constant of integration, say, Ci \ 1 and

the curve fi = f (w,Ci), which pertains to that constant.

Assume that at the moment of time t0 a larva has initial

coordinates (f0, w0) which correspond to a certain point of

the curve. For anther moment of time t1 [ t0 the angle of

turn w grows and another pair of coordinates (f1, w1) gives

another point of the same curve. If we continue this pro-

cess, all such points will draw a curve which corresponds to

the constant Ci. This process of drawing the curve by a

moving point is indicated in Fig. 22 by arrows.

The point of intersection of a curve of the diagram with

a boundary (boundaries) determines the coordinates of the

particle in the moment of contact. For any curve crossing a

bounding line any of its points (f0, w0) can be considered as

an initial one. Then, a larva-particle starting the motion

with this initial condition will eventually reach the

boundary (boundaries).

The coordinate of the intersection point of the curve

f = f (w, C) with the boundaries are f = 0 or f = 1. We

are interested neither in these coordinates, nor in the

moment of time when contact takes place, but in the fact

of crossing of the boundary (boundaries) by curves f =

f(w,C), i.e., in the fact of contact.

The further analysis is carried out, by using the diagram in

Fig. 22 for two separate cases, k [ 2 (Fig. 22a) and k B 2

(Fig. 22b), correspondingly. In Fig. 22 the line f(w, C = 1)

(separatrix) divides the domain (0 \ f\ 1, -p \ w \ p)

into two subdomains. All curves which are located below the

separatrix correspond to constants C \ 1. All curves which

Boundary layer 

Linearization

Linear shear flow 

Fig. 21 Approximation of a boundary layer velocity profile by a

linear velocity profile. Circles denote larvae in a linear shear flow and

in a boundary layer of a body of general geometry. Since both flows

are vortical, the kinematic behavior of larvae in a boundary layer and

in a linear shear flow are expected to be similar
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are located above the separatrix correspond to constants

C [ 1. All curves corresponding to C \ 1 cross the lower

boundary. Any point which belong to the area bounded by the

curve f(w,C = 1) and line f = 0 crosses the boundary

because it belongs to a certain curve f(w,C \ 1). All such

points are depicted as black circles. Points which are

depicted as white circles belong to the domain C [ 1; they do

not cross the boundary f = 0. If the line f = 1 represents the

wall of the Couette channel, the gray points should be

counted as those, which contact the upper wall. However, if

the line f = 1 represents the boundary of the linear boundary

layer the gray points should be counted as those, which do not

contact the boundary.

For the further calculations it is assumed that larvae are

distributed randomly and uniformly within the range (0, 1)

and that the initial angles of turn are also random numbers

distributed uniformly in the range (-a, a), where a B p.

If we take a sufficiently large number of points (an

infinite in a limiting case) they will fill corresponding

areas. The area, which is filled by particles, crossing the

boundary (boundaries) divided by the area filled by all

particles can be defined as the probability of contact. It is

not difficult to calculate the contact probability for all

possible cases, considered above. However, for the sake of

brevity we give here formulas for contact probability only

for the linear boundary layer.

For k [ 2 (Fig. 22a) the probability of contact P can be

approximated as the ratio of the area filled by black points

and the total area S0 = 2a. Simple calculations of the cor-

responding areas yield the contact probability in the

following form:

P ¼ 1

k
1þ sin a

a

� �
: ðI:2Þ

For k\ 2 the calculations of the contact probability are

somewhat more complicated because it is necessary to take

into account the fact that the line f = 1 crosses the curve

f(w,C = 1) at the points b ¼ 2 arcsin
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k=2

p
(Fig. 22b)

and the result depends on the sign of the difference a-b.

Similarly to the previous case, the contact probability can

be calculated as the ratio of two areas, one with black points

and the other one including all particles. A closer scrutiny of

Fig. 22b and simple calculations of the corresponding areas

give the contact probability in the following form:

P ¼ 1 b � a;
1
a bþ 1

k ða� bþ sin a� sin bÞ
� �

b\ a:

�
ðI:3Þ

If we assume that all larvae enter the vortical flow with

the same zero initial angle of turn (a?0) then formulae

I.2 and I.3 can be greatly simplified, yielding Eq. 51.

Expressions I.2–I.3 are plotted in Fig. 16.

Appendix II

In this Appendix, we derive a closed form solution for the

probability of contact of larvae moving in a plane

Poiseuille channel. It many details the corresponding

analysis is similar to that given in Appendix I for a linear

shear flow. Therefore, for the sake of brevity, we give here

only the principal details of the calculations.

Introduce first the non-dimensional variables n = XO/R,

f = ZO/R and s = Ua t/R. In non-dimensional coordinates

the boundaries of the channel are represented by lines

f = ±1. It is assumed that the initial coordinates of larvae

f0 and the initial angles of turn w0 are represented by

random numbers which are distributed uniformly in the

rectangle |f0 | \ 1 and | w0 | \ a B p.

Although the analytic solution of Eqs. 39–41 is unknown,

the contact probability can still be expressed in a closed form.

ζ=1

ζ=0
ψ−π −α α

C=
1

C>1

C<1

β−β

ζ=1

ζ=0
−π π

C>1
C<1

C=1

Ψ−α α

π

(a)

(b)

Fig. 22 Linear shear flow: the coordinate of a particle f as function

of its angle of turn w. a -k = Ua/VS [ 2; b -k B 2. The line f = 0

represents the non-dimensional coordinate a fixed wall; the line f = 1

represents another wall, which moves with a given velocity (Couette

flow) or the upper bound of the linear boundary layer. The line which

corresponds to the constant of integration C touches the boundary

f = 0 and separates the domain 0 \ f\ 1 into two subdomains

which contain curves corresponding to constants of integration C \ 1

or C [ 1. In the Couette flow bounded by two wall curves f = f(w,C)

may cross the lower wall (black circles), the upper wall (gray circles)

or none of them (white circles). In the linear boundary, layer the

curves f = f(w,C) with black points may cross the lower boundary;

whereas the white and gray particles do not

Mar Biol (2008) 154:1–26 23
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For the case of a neutrally buoyant larva Eqs. 39–41 can be

easily reduced to the differential equation of a pendulum

d2w
ds2
¼ 2

sin w
k

; ðII:1Þ

which can be transformed into a so-called phase portrait of

a pendulum

dw
ds
¼ �2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C � cos w

k

r
: ðII:2Þ

Here C is a constant of integration, which is determined by

the angle of turn and its derivative with respect to non-

dimensional time (Jordan and Smith 1987). Using Eq. 41

the phase portrait can be transformed into a parametric

dependence, which is more convenient for our purposes:

fðw;CÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C � cos w

k

r
; ðII:3Þ

where the constant of integration is now determined by a

pair of numbers (f0, w0). Relation Eq. II.3 is plotted in

Fig. 23 and represents closed and open curves with a

separatrix f(w,C = 1). Denoting the curve which touches

the wall f = ±1 at the points w = ±p as fl (w) = ±f (w,

Cl), the value of the corresponding constant of integration

Cl can be obtained as a solution of an algebraic equation ±

f(±p,Cl) = ±1 yielding Cl = k-1 and

flðwÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k� 1� cos w

k

r
: ðII:4Þ

Analysis of Fig. 23a shows that for k[ 2 the probability of

contact can be calculated as the ratio of the area with black

points and the total area filled by all points. Calculating the

ratio of the two areas yields

P ¼ 1� 1

a

Za

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k� 1� cos w

k

r
dw: ðII:5Þ

For k B 2, the limiting curves fl cross the axis f = 0 at

angles b = ± arccos (k - 1) (Fig. 23b). In Fig. 23b, we have

three types of points. The white particles belong to closed

curves which do not cross the boundary. Once again, the

probability of initial contact can be calculated as the ratio of

the area with black and gray points and the total area of the

corresponding rectangle 2a, which includes all symbols.

Analytic calculations of the corresponding areas show that

for k B 2 the probability of initial contact is given by

P ¼
1; b� a;

1� 1
a

Ra
b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k�1�cos w

k

q
dw; b\a:

8<
: ðII:6Þ

If we assume that all larvae enter the vortical flow with the

same zero initial angle of turn (a?0) formulae (II.5) and

II.6 become very simple yielding 52.

Relations II.5 and II.6 incorporate integrals, which are

computed here numerically with a relative error of less than

0.1%. The results of computations for different values of

the parameters involved are plotted in Fig. 16.

Appendix III

The coordinates of N particles randomly and uniformly

distributed inside a circle of radius R are calculated as

follows (Sobol 1994):

ζ=−1−α α

0−π π

D
is

pl
ac

em
en

t

ψ 2π−2π

2/λ

ζ=1

ζ=1

ζ=−10

2/λ

ψ β α 2π−2π −β−α−π π

(a)

(b)

Fig. 23 Plane Poiseuille flow: the coordinate of a particle f as

function of its angle of turn w. a k [ 2, b k B 2. The walls of the

channel are represented by lines f = ±1. The range of the possible

initial angles of larvae turns is denoted as (-a,a). The diagram

consists of closed and unclosed curves divided by a separatrix. In (a)

are plotted the bounds of the channel, two symmetric unclosed curves,

touching the boundary, and the separatrix; whereas the closed curves,

which are encircled by the separatrix are not shown. The separatrix

does not cross the bounds and only curves that are formed by black

point (black circles) cross the rigid boundaries. The white particles on

a gray background belong to curves, which do not cross the bounds. A

large number of white and black particles cover certain areas. The

ratio of the area filled by white particles and the total area filled by all

particles is defined as the probability of contact. In (b) the separatrix

crosses or touches the lines f = ±1. Therefore, both types of curves,

closed and unclosed may cross the boundary. The coordinate of

intersection of the separatrix and the bounding lines is denoted as | b |

= arccos (k - 1). For the initial angles of pich |w0 | \ a and | b| C a
open curves, which are formed by black points, and closed curves,

which are formed by gray, circles cross the boundary. Closed curves,

which are formed by white circles on a gray background do not cross

the boundaries. The probability of contact is the ratio of the area filled

by black and gray particles and the total area filled by all particles.

If |b | \ a (the case which is not shown on the diagram) only black

and gray points has to be taken into account. Since black and gray

particles form curves, which always cross the bounds the probability

of contact is equal to one
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XOi ¼ R
ffiffiffiffiffi
c1i

p
cos 2pc2i and ZOi ¼ R

ffiffiffiffiffi
c1i

p
sin 2pc2i

ði ¼ 1; 2; � � �NÞ; ðIII:1Þ

where c1,2 are distinct random numbers distributed uni-

formly between 0 and 1. We also assume that the initial

direction of the self-propulsion vector is represented by

random angles distributed uniformly in the range (-a, a)

as r = (2cr-1)a, where r is one of the Euler angles

|a| \ p and cr is a random number distributed uniformly

between zero and one.

Appendix IV

In the right-hand orthogonal coordinate system O1XYZ with

vector units of the axes jX, jy and jZ correspondingly, the

mathematical operation curl U is given by a determinant

curl U 	
jX jY jZ
o

oX
o
oY

o
oZ

UX UY UZ

������
������

¼ jX

oUZ

oY
� oUY

oZ

� �
� jY

oUZ

oX
� oUX

oZ

� �

þ jZ

oUY

oX
� oUX

oY

� �
:

In the case of a two-dimensional motion when the fluid

velocity vector is located in the plain O1XZ, the vector of

the vorticity has only one component

curl2U ¼ oUX

oZ
� oUZ

oX

� �
jY ;

which is directed perpendicularly to the plane O1XZ. In the

case of a linear shear flow when the vector of fluid velocity

is parallel to the axis O1X and depends linearly on the

coordinate Z the vorticity vector is equal to the constant

gradient of the fluid velocity. In this particular case the

absolute value of the vorticity vector and of the value of

the rate of shear are expressed by the same gradient of the

velocity in the direction perpendicular to its vector, i.e., by

oUX=oZ:
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